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Abstract. We present a novel model to simulate real social networks of complex interactions, based in a
system of colliding particles (agents). The network is build by keeping track of the collisions and evolves
in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features
are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an
event-driven algorithm of collisions where energy is gained as opposed to physical systems which have
dissipation. The model reproduces empirical data from networks of sexual interactions, not previously
obtained with other approaches.

PACS. 89.65.-s Social and economic systems – 89.75.Fb Structures and organization in complex systems
– 89.75.Hc Networks and genealogical trees – 89.75.Da Systems obeying scaling laws

1 Introduction

A social network is a set of people, each of whom is ac-
quainted with some subset of the others. In such a net-
work the nodes (or vertices) represent people joined by
edges denoting acquaintance or collaboration. Empirical
data of social networks include networks of scientific co-
llaboration [1], of film actor collaborations [2], friendship
networks [3] among some others [4]. One kind of social
network is the network of sexual contacts [5–8], where con-
nections link those persons (agents) that have had sexual
contact with each other. The empirical investigation of
such networks are of great interest because, e.g. the topo-
logical features of sexual partners distributions help to
explain why persons can have the same number of sexual
partners and yet being at distinct risk levels of contracting
HIV [9].

The simplest way to characterize the influence of each
individual on the network is through its degree k, the num-
ber of other persons to whom the individual is connected.
Sexual contact networks are usually addressed as an exam-
ple of scale-free networks [6–8,10], because its property of
having a tail in its degree distribution, which is well fitted
by a power-law P (k) ∼ k−γ , with an exponent γ between 2
and 3. However, another characteristic feature, not taken
into account, is that the small k-region, comprehending
the small-k values varies slowly with k, deviating from
the power-law. Moreover, the size of the small-k region
also increases in time, yielding rather different distribu-
tions when considering the number of partners during a
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one year period or during the entire life, e.g. for entire-life
sexual contacts, the degree distribution shows that at least
half of the nodes have degree in the small-k region [5,6].
A model predicting all these different distributions shapes
for different time spans is of crucial interest, because the
transmission of diseases occur during the growth mecha-
nism of the network.

One of the main difficulties for validating a model of
sexual interactions is that typical network studies of sexual
contacts involve the circulation of surveys, or anonymous
questionnaires, and only the number of sexual partners
of each interviewed person is known, not being possible
to obtain information about the entire network, in order
to calculate degree correlations, closed paths (cycles), or
average distance between nodes.

In this work we propose a model of mobile agents in
two dimensions from which the network is build by keep-
ing track of the collisions between agents, representing the
interactions among them. In this way, the connections are
a result not of some a priori knowledge about the net-
work structure but of some local dynamics of the agents
from which the complex networks emerge. Below, we show
that this model is suitable to reproduce sexual contact
networks with degree distribution evolving in time, and
we validate the model using contact tracing studies from
health laboratories, where the entire contact network is
known. In this way, we are able to compare the num-
ber of cycles and average shortest path between nodes
as well as compare the results with the ones obtained
with Barabási-Albert scale-free networks [11], which are
well-known models, accepted for sexual networks [6–8].
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We start in Section 2 by describing the model of mobile
agents, and in Section 3 we apply it to reproduce the sta-
tistical features of empirical networks of sexual contacts.
Discussion and conclusions are given in Section 4.

2 Model of mobile agents for sexual
interactions

The model introduced below is a sort of gas [12], where
N particles with small diameter d represent agents ran-
domly distributed in a two-dimensional system of linear
size L � √

Nd (low density) and the basic ingredients are
an increase of velocity when collisions produce sexual con-
tacts, two genders for the agents (male and female), and
n/N , the fraction of agents that belong to the network,
which constitutes an implicit parameter for the resulting
topology of the evolving the network.

The system has periodic boundary conditions and is
initialized as follows: all agents have a randomly chosen
gender, position and moving direction with the same ve-
locity modulus |v0|. We mark one agent from which the
network will be constructed. When the marked agent col-
lides for the first time with another one of the oppo-
site gender, the corresponding collision is taken as the
first connection of our network and its colliding partner
is marked as the second agent of the network (Fig. 1a).
Through time, more and more collisions occur, increasing
the size n of the network (Figs. 1b and 1c) till eventually
all the agents composing the system are connected.

Collisions between two agents take place whenever
their distance is equal to their diameter and the collision
process is based on an event-driven algorithm, i.e. the sim-
ulation progresses by means of a time ordered sequence of
collision events and between collisions each agent follows
a ballistic trajectory [13]. Since sexual interactions rely on
the sociological observation [14] that individuals with a
larger number of partners are more likely to get new part-
ners, we choose a collision rule where the velocity of each
agent increases with the number k of sexual partners. The
larger the velocity one agent has the more likely it is to
collide. Moreover, contrary to collision interactions where
velocity direction is completely deterministic [15], here the
moving directions after collisions are randomly selected,
since in general, sexual interactions do not determine the
direction towards which each agent will be moving after-
wards. Therefore, momentum is not conserved.

Regarding these observations our collision rule for sex-
ual interactions reads

v(ki) = (kα
i + |v0(i)|)ω, (1)

where ki is the total number of sexual partners of agent i,
exponent α is a real positive parameter, ω = (ex cos θ +
ey sin θ) with θ a random angle and ex and ey are unit
vectors. Collisions which do not correspond to sexual in-
teractions only change the direction of motion. It should
be pointed out that the motion of agents occurs in a space
which is not the common physical space, but rather a gen-
eral continuous Euclidean space, whose norm is related

Fig. 1. Snapshots of the growing network of collisions in a low-
density gas with N = 100, for (a) n = 0.02N , (b) n = 0.15N ,
(c) n = N . In the on-line version two colors represent the
two sexual genders and larger symbols emphasize those which
belong to the network (linked agents).
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Fig. 2. (a) Cumulative distribution Pcum(k) of the number k of
partners among agents, when considering type-(i) and -(ii) in-
teractions (see text) for n = 103 (circles), n = 104 (squares),
n = 5× 104 (diamonds) and n = 105 (triangles). For the same
parameter values (b) shows a pure scale-free distribution, ob-
tained when only type-(ii) interactions form links. The solid
line indicates the slope γ = 3 of the scale-free distribution.
Here α = 1 and N = 320 × 320.

with some ‘social’ distance, depending not only on the
physical distance between each pair of agents, but also on
their common features and acquaintances.

Collisions corresponding to sexual interactions,
i.e. with a velocity update as in equation (1), are the
only ones which produce links, and occur in two possible
situations: (i) between two agents which already belong
to the network, i.e. between two sexually initiated agents
and (ii) when one of such agents finds a non-connected
(sexually non-initiated) agent. For simplicity, we do
not take into account sexual interactions between two
non-connected agents, and therefore our network is
connected (see the discussion in Sect. 4).

When interactions of type (i) and (ii) occur, both the
distribution tail and the small-k region are observed, as
shown by the cumulative distribution Pcum(k) in Fig-
ure 2a. Here, we use a system of N = 320 × 320 agents
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Fig. 3. Cumulative distributions, when varying (a) a parame-
ter s of selectivity which interpolates between Figures 2a and
2b (see text) for α = 1 and (b) the exponent α in the update
velocity rule, equation (1), for s = 0. Here the same stage of
growth is considered, namely n = 5 × 104 = 0.5N .

with ρ = 0.02, α = 1 and distributions are plotted for
different stages of the network growth, namely n = 103,
n = 104, n = 5 × 104 and n = 105 ∼ N . As one sees, the
exponent of the power-law tail and the transition between
the tail and the small-k region increase during the growth
process. These features appear due to the fact that at
later stages most of the collisions occur between already
connected agents. Consequently, the average number of
partners increases as well.

If one considers only type-(ii) sexual contacts, the sys-
tem reproduces a stationary scale-free network, as shown
in Figure 2b. In this case the average number of partners,
defined as [17] 〈k〉 = kmin(γ − 1)/(γ − 2) with kmin the
minimum number of partners, is always 2 (kmin = 1 and
γ = 3). As we show below, while empirical data of sexual
contacts over large periods have distributions like the ones
for regime (i)+(ii), data for shorter periods (1−10 years)
are scale-free (only (ii)).

With our model one can easily interpolate between
both interaction regimes, (i)+(ii) and (ii), by introducing a
parameter s of ‘selectivity’, defined as the probability that
sexual initiated agents in case of collision with another ini-
tiated agent, have no sexual contact. Physically, this selec-
tivity accounts for the intrinsic ability that a node has to
select from all its contacts (collisions) the ones which are
sexual. These intrinsic abilities were already used in other
contexts, e.g. as a new mechanism leading to scale-free net-
works in cases where the power-law degree distribution is
neither related to dynamical properties nor to preferential
attachment [18]. For s = 0 one obtains the two regions
illustrated in Figure 2a, namely the small-k region and
the power-law tail, while for s = 1 one obtains the pure
scale-free topology illustrated in Figure 2b. In Figure 3a,
we show the crossover between these two regimes.

The shape of the cumulative distributions is also sen-
sible to the exponent α in the update velocity rule, equa-
tion (1), as shown in Figure 3b. While for small values of
α � 1 one gets an exponential-like distribution, for α � 1.4
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Fig. 4. Cumulative distribution of sexual partners in a network
of heterosexual contacts extracted from reference [6], where
male (triangles) and females (circles) distributions are plotted
separately, with a total of 2810 persons. Solid lines indicate
the simulations when plotting the distributions at the same
stage n = 0.2N , starting with a population composed by 58%
of females and 42% of males. Here N = 105, s = 0.

the distribution shows that a few nodes make most of the
connections. This deviation from power-law tails outside
the range 1 � α � 1.4 was already reported in other
contexts and is related to the ‘rich gets richer’ behavior
proposed by Simon [22]. Henceforth, we fix α = 1.2.

Having described the model of mobile agents we pro-
ceed in the next section of a specific application, i.e. mod-
eling empirical networks of sexual contacts.

3 Reproducing networks of sexual contacts

In this section we will show that, by properly choosing
the parameter values in our model, one can reproduce real
data distributions of sexual contact networks. In Figure 4
the cumulative distributions of a real contact network [6]
are shown for females (circles) and males (triangles) sep-
arately, based on empirical data from 2810 persons in a
Swedish survey of sexual behavior, where each person re-
ported the number of sexual partners they had in a given
period of time (frequency of sexual relations with each
partner is neglected). The solid lines in Figure 4 indicate
the simulated distributions. The simulated power-law tails
have exponents γm = 2.4 and γf = 4.0 for males and
females respectively, compared with the empirical data
γm = 2.6±0.3 and γf = 3.1±0.3 [6]. To stress that, while
the power-law tails are also well fitted by distributions
obtained with scale-free networks (dashed lines in Fig. 4),
these distributions have a minimum number of connec-
tions (partners) of kmin = 5 for females and kmin = 7 for
males, contrary to the real value kmin = 1 also reproduced
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Fig. 5. Distributions of sexual partners in a network of het-
erosexual contacts using different amounts of females: (a) 58%
as in Figure 4, (b) 52%, (c) 64% and (d) 70%. In each plot
solid and dashed lines indicate the cumulative distributions of
males and females respectively, for five different realizations.
Clearly, the exponent of the power-law tail of the distributions
decreases when the percentage of females or males increases
(see dotted lines). Same conditions as in Figure 4 were used.

with our agent model. In fact, the model of mobile agents
takes into account not only the power-law tail of these
distributions, but also the small-k region which compre-
hends the significant amount of individuals having only a
few sexual partners (k � 1).

Is important to note that in order to reproduce the dif-
ference in the exponents is necessary to have 58% females
and 42% males, which is far from the expected difference
among number of females and males in typical human pop-
ulations, with ratios of females:males of the order of 1.1.
The difference in the exponents of the distributions tails
for males and females separately, present in the data of
sexual surveys, has generated much controversy and is of-
ten considered due to a bias either of sampling or honest
reporting (see Ref. [5] and references therein). The expo-
nents γm and γf on a bipartite network are expected to
be nearly the same when the percentage of males and fe-
males are similar, as shown in Figure 5. In each plot five
different realizations are shown for males (solid lines) and
females (dashed lines). In Figure 5a, we plot the results
for the same conditions as in Figure 4 (58% females and
42% males). Taking the average of the five curves for each
gender yields the curves shown in Figure 4. Figures 5b−5d
show the distributions obtained for other percentages il-
lustrating that when decreasing the difference in the ra-
tio females:males difference in the exponents disappear.
A characteristic feature of our model is that the average
number 〈k〉 of partners increases as the network grows,
which is natural characteristic expected to occur in real
sexual networks according to the observed differences in
the shape of the degree distribution for yearly and entire-
life reports of number of sexual partners [6,7]. This fea-

103 104 105

n
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<k>  Scale Free
 Agents

Fig. 6. Comparing the average number of partners for scale-
free networks (stars) and the agent model (circles). For the
scale-free network kmin = 4 and for agent model N = 520×520,
s = 0.

(a)
(b)

Fig. 7. Sketch of two real sexual contact networks having (a)
only heterosexual contacts (N = 82 nodes and L = 84 con-
nections) and (b) homosexual contacts (N = 250 nodes and
L = 266 connections). While in the homosexual network trian-
gles and squares appear, in the heterosexual network triangles
are absent (see Table 1).

ture is not observed in scale-free networks, as illustrated
in Figure 6. Of course, that this growth also indicates non-
stationary regimes, where 〈k〉 diverges with the network
growth. In the next section we explain how to overcome
this shortcoming.

We compare the model, with two empirical networks
of sexual contacts. One network is obtained from an em-
pirical data set, composed solely by heterosexual contacts
among n = 82 nodes, extracted at the Cadham Provincial
Laboratory (Manitoba, Canada) and is a 6-month block
data [20] between November 1997 and May 1998 (Fig. 7a
sketches this network). The other data set is the largest
cluster with n = 250 nodes in the records of a contact
tracing study [19], from 1985 to 1999, for HIV tests in
Colorado Springs (USA), where most of the registered con-
tacts were homosexual (see Fig. 7b).

Figures 8a and 8b show the cumulative distribution of
the number of sexual partners for each of the empirical
networks. For both cases the agent model and scale-free
networks with kmin = 1 can reproduce the distribution of
the number of partners. However, the agent model with
s = 0.7 reproduces, as well, the clustering coefficient dis-
tribution that we measure from the empirical network.

The clustering coefficient C(i) of one agent is de-
fined [2] as the total number of triangular loops of con-
nections passing through it divided by the total num-
ber of connections ki. Averaging C(i) over all nodes with
ki neighbors yields the clustering coefficient distribution
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Fig. 8. (a) Cumulative degree distribution of a homosexual
contact network [19] with n = 250 (triangles). (b) Cumulative
degree distribution of a heterosexual contact network [20] with
n = 82 (triangles). Each case is compared with the average
degree distribution over 20 iterations, for the BA scale-free
model (dashed line) with kmin = 1, and kmin = 2 and with our
agent model (solid line) with s = 0.7. (c) Cluster coefficient for
the homosexual network empirical data (triangles), the agent
model (solid line) and the sf model kmin = 2. The scale-free
kmin = 1 yields C(k) = 0 (not shown).

C(k). While for the scale-free graph which better repro-
duces these empirical data, the clustering coefficient is
zero, our agent model yields a distribution which resem-
bles the one observed in the real network (Fig. 8c). This
feature is due to the co-existence of a tree-like substruc-
ture and closed paths (see Fig. 7b).

For both heterosexual and homosexual networks of
sexual contacts, the model of mobile agents reproduces
other important statistical features, namely the average
clustering coefficient C and the number of loops of a given
order. Table 1 indicates the number T of triangles (loops
composed by three edges), the number Q of squares (loops
with four edges) and the average clustering coefficients C
given by [2] the average of C(i) over the entire network.

When using the agent model with the same number N
of nodes as in the real networks we obtain similar results
for L, T , Q and C, as shown in Table 1 (middle), where
values represent averages over samples of 100 realizations.
For the heterosexual network there are no triangles due to
the bipartite nature of the network. In order to ascertain
possible nontrivial features in these empirical networks,
we compare the topological measures of them with the
ones of a null model having the same degree distribution.
The null model is a randomized version of the empirical
networks, constructed by rewiring connections randomly
selected [16]. Namely, whenever one pair of links is se-
lected, say i ↔ j and k ↔ l, we substitute this links by
two other, one connecting i and k and another connecting
j and l. While in the heterosexual network the number

Table 1. Clustering coefficients and cycles in two real networks
of sexual contacts (top), one where all contacts are heterosex-
ual and another with homosexual contacts. In each case one
indicates the values of the number N of nodes, the number L
of connections, the number T of triangles, the number Q of
squares and the average clustering coefficient C. The values of
these quantities are computed for networks constructed with
the agent model, with two null models (see text), one where the
number of triangles is fixed and another where this restriction
is not imposed, and with scale-free networks with kmin = 2.
For kmin = 1, one has better values for the number L of links
in both the heterosexual and the homosexual networks, L = 81
and L = 249 respectively, but there are no cycles (not shown).

N L T Q C

Heterosexual 82 84 0 2 0

Homosexual 250 266 11 6 0.029

Heterosexual 82 83.63 0 1.45 0
(Agent Model)
Homosexual 250 287.03 8.23 10.52 0.023

(Agent Model)

Heterosexual 82 84 0 8.47 0
(Null model)

Homosexual 250 266 6.94 16.2 0.011
(Null model)

Heterosexual 82 84 0 8.47 0

(Null m., same T )
Homosexual 250 266 11.0 21.462 0.015

(Null m., same T )

Heterosexual 82 162 0 159.72 0
(Scale-free)
Homosexual 250 498 45.28 256.79 0.082

(Scale-free)

of squares is overestimated, for the homosexual network
the null model yields reasonable results for the cluster-
ing coefficients, although with a larger discrepancy in the
number of triangles and squares than in the case of the
agent model. In order to compare the number of squares
without the effect of the number of triangles in the net-
work, we consider also the case of a null model where
additionally to the degree distribution, the number T of
triangles is also the same. In this case, Table 1 shows still
an underestimation of C and a much larger number Q of
squares.

At the bottom of Table 1 we also show the values ob-
tained with scale-free networks, for both cases of one and
two genders, whose minimum number of connections was
chosen to be kmin = 2, for which the clustering coefficient
distributions are as close as possible from the distribu-
tions of the real networks. Clearly, the agent model not
only yields clustering coefficient values much closer to the
ones measured in the empirical data, but also does not
show the formation of huge amounts of loops (triangles
and squares), a feature of scale-free networks which is not
observed in empirical data.
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4 Discussion and conclusions

In this paper we presented a new model for networks
of complex interactions, based on a system of mobile a-
gents whose collision dynamics is governed by an efficient
event-driven algorithm and generate the links (contacts)
between agents. As a specific application, we showed that
the dynamical rules for interactions in sexual networks can
be written as a velocity update rule which is a function of
a power α of the previous contacts of each colliding agent.
For suitable values of α and selectivity s, the model not
only reproduces empirical data of networks of sexual con-
tacts but also generates networks with similar topological
features as the real ones, a fact that is not observed when
using standard scale-free networks of static nodes.

Furthermore, our model predicts that the growth
mechanism of sexual networks is not purely scale-free,
due to interactions among internal agents, having a mean
number of partners which increases in time. This should
influence the predictions from models of spreading of in-
fections [17]. Our agent model offers a realistic approach
to study the emergence of complex networks of interac-
tions in real systems, using only local information for each
agent, and may be well suited to study networks in socio-
physics, biophysics and chemical reactions, where interac-
tions depend on specific local dynamical behavior of the
elementary agents composing the network.

Since the results obtained with the present model are
clearly more satisfactory than the ones obtained with pre-
vious models, we think that the key feature of mobile
agents systems, namely mobility, is a fundamental key-
stone in real contact networks. Further studies of the
model have shown that the resulting clustering coefficient
is sensible to the selection of the chosen density [21], influ-
ence of the spatial dimension has not been examined but
should not play an important role.

While given promising results the model may be
improved in two particular aspects. First, it should
enable the convergence towards a stationary regime
with a growth process starting with all possible colli-
sions instead of one particular agents from which the
network is constructed. In the actual model it could be
examined the influence of those avoided interactions,
by keeping track of the frequency of collisions among
non-connected agents. Second, the dependence of the
above results on the velocity rule in equation (1) should
be studied in detail, namely for the case of constant
velocity (α = 0). Preliminary results have shown that
the stationary regime is easily obtained with the model
above by introducing a simple aging scheme, while by
varying the parameter α one is able to reproduce other
non-trivial degree distributions. Moreover, we introduced
the selectivity parameter s to select from all possibles
social interactions (collisions) the ones which are of
sexual nature. Without introducing this selectivity, the
model of mobile agents is able to reproduce other so-

cial networks of acquaintances. Finally, the very few cycles
present in the available data sets, here analyzed, could be
just an affect of their small size. Therefore, larger data sets
should be available in order to analyze and strengthen
the applicability of the present model. These and other
questions will be addressed elsewhere [21].
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